

Introduction of **TESolution**

Contents

Company Overview

CEO's Message Vision & People Organization Chart & Location History Facilities & Equipment Lead Engineers

Awards & Certificates

Expertise

Structure Aerodynamics Bridge Aerodynamics Vibration Control Device Analytics of Wind & Vibration

Track Record

Company Overview Awards & Certificates Track Record Expertise CEO's Message Awards Vibration Control Devices Track Record Structure Aerodynamics Certificates

Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers

CEO's

Message

Bridge Aerodynamics Analytics of Wind & Vibration

Global Presence

Our company was established in February 2001, with the goal to provide better life to our clients through our accurate evaluation of safety and serviceability of various structures and our solutions to improve them, based on our differentiated technical expertise and accumulated experience in the field of Wind Engineering and Vibration Control.

As to the field of Wind Engineering, TESolution provides solutions for safer and better life with evaluation on serviceability of buildings and bridges, through wind resistance stability tests, wind induced vibration tests, and evaluation on wind environment based on our highest level of expertise and technically advanced facilities.

As to the field of Vibration Control, TESolution provides solutions to improve the quality of living environment through our vibration control devices that reduce or suppress the vibration occurred from wind load, seismic load, or traffic load on various structures.

We promise our very best to provide satisfactory results for our clients with our differentiated technical services and our continuous R&D efforts.

CEO of TESolution Dr. Kim, Yun Seok

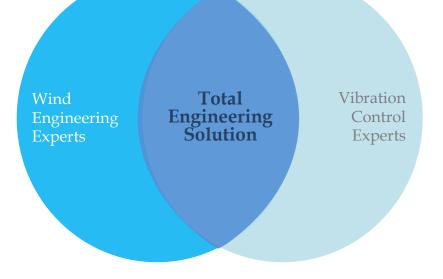
CEO Yun-seok KIM

TESolution Co., Ltd.

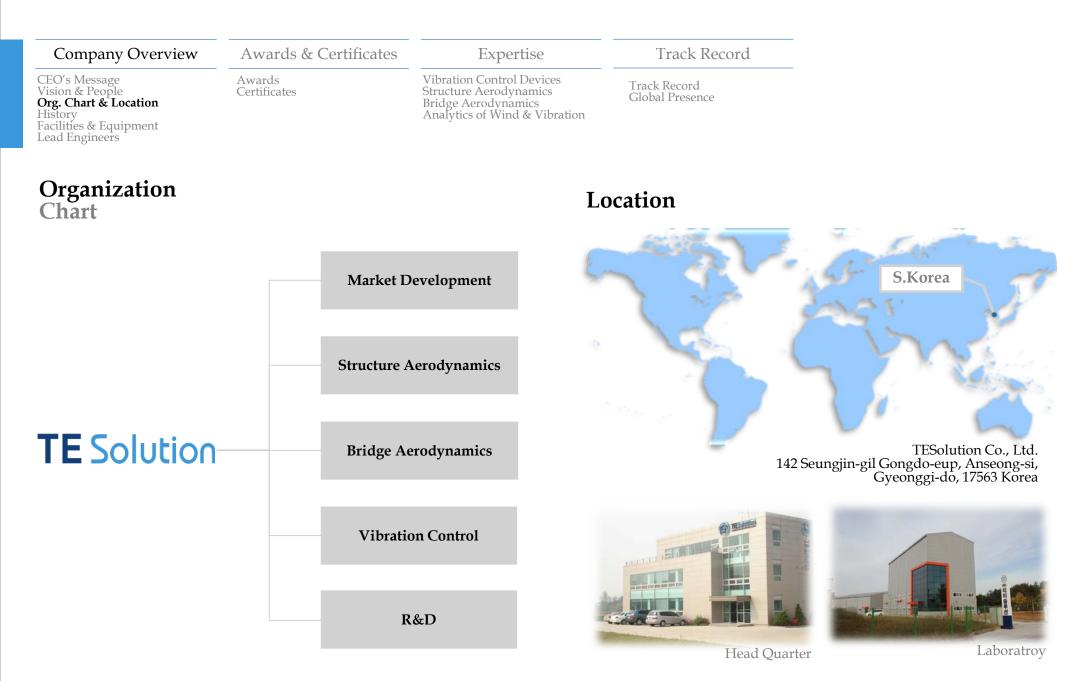
Company Overview	Awards & Certificates	Expertise	Track Record
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence
Vision		Pe	eople

Тор

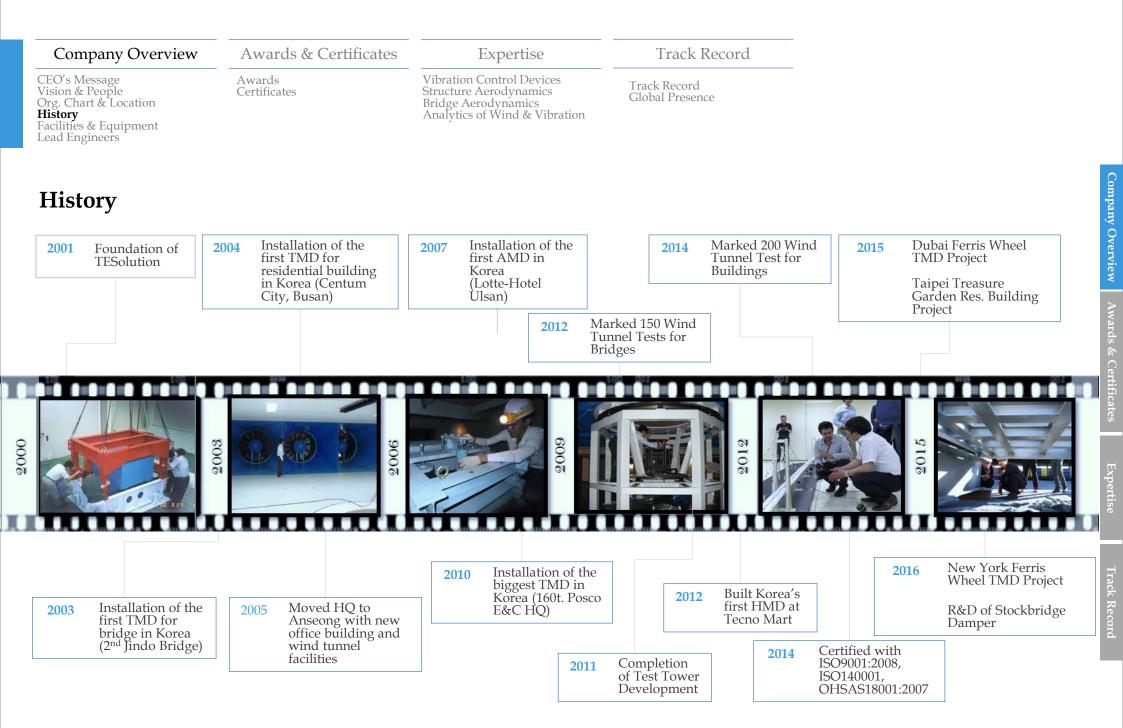
Strive to be leaders in the field of Wind **Engineering & Vibration** Control through the higher levels of product quality and customer service


Harmony

Promote greater harmony with people & nature by providing the best solution to our customers


Differentiate

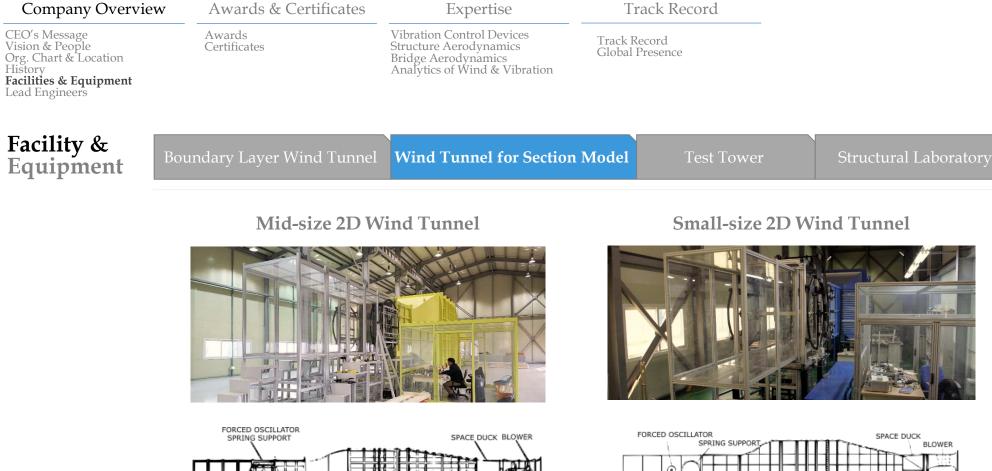
Differentiate with continuous R&D and comprehensive solution


"We strive to provide Total Engineering Solution in Wind Engineering & Vibration Control."

4

5

Wind Engineering & Vibration Control



Company Overview	Award	s & Certificates	Expertise	Track Record	
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificate		Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence	
Facility & B Equipment	Soundary Lay	yer Wind Tunnel	Wind Tunnel for Section	on Model Test Tower	Structural Laboratory
		Blower			
	Туре	Open-circuit (Suc	tion)		
Ţ	Test Section	8.0m(w) x 2.5m(h	l) x 23.2m(l)		a set of the loss
V	Wind Speed	$0.3 \sim 11.0 \text{m/s}$		TRAVERSER	
-	Turbulence Intensity	0.5% , Wind Speed	d Deviation ±1.0%	LOWER SPACE DUCT	
ç	Suction Fan	3EA, 132kW		TURN TABLE	

7

TESolution Co., Ltd.

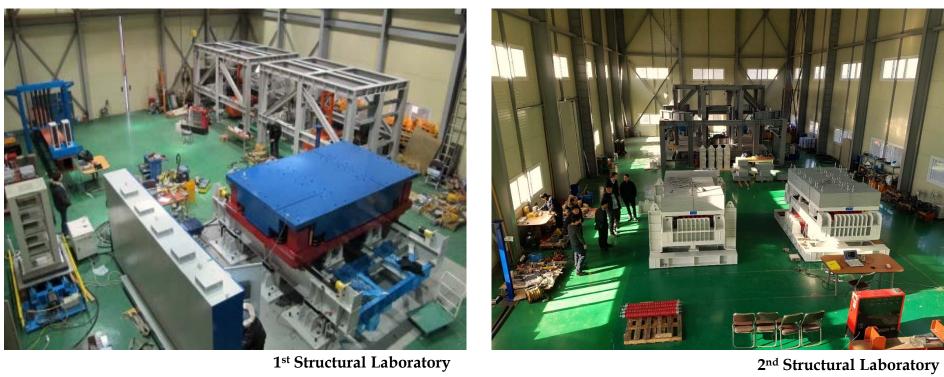
Wind Engineering & Vibration Control

└┢╧╈
10000000000

Type	Test Section Dimension	Wind Speed
Eiffel-type	1.5 m (W) x 2.0 m (H) x 7.5 m (L)	0.3m/s ~ 25.0 m/s

Awards & Certificates

Track Record


FORCED OSCILLATOR SPRING SUPPORT	SPACE DUCK

Type	Test Section Dimension	Wind Speed
Eiffel-type	1 m(W) x 1.5 m (H) x 6 m (L)	0.3m/s ~ 21.0m/s

Company Overview	Awards & Certificates	Expertise	Track Record		
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence		
Facility & Equipment	Boundary Layer Wind Tunnel	Wind Tunnel for Section 1	Model Test	Tower	Structural Laboratory
			<image/>	Composition Heights Description	Control RoomExcitation Room5 Stories (20m Height)Performance testing for developed vibration control devices

9

Company Overview	Awards & Certificates	Expertise	Track Record	
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence	
Facility & Equipment	Boundary Layer Wind Tunnel	Wind Tunnel for Section N	Vlodel Test Tower	Structural Laboratory

1st Structural Laboratory

Company Overview

CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers

Engineers

Lead

Awards & Certificates

Awards Certificates Expertise

Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration

Track Record **Global** Presence

Track Record

Dr. Yun-seok, KIM

Description

Dr. Yun-seok Kim has worked as the chief of wind engineering & vibration control department in Hyundai Institute of Construction Technology for over 10 years. As the pioneer of vibration control system in Korea, he installed the first Hybrid Mass Damper in Korea on the control tower of Incheon International Airport. He has also conducted many wind engineering studies of high-rise buildings and long span bridges during his tenure. He established TESolution Co., Ltd. in 2001, and has led the operation of over 300 wind tunnel tests and vibration control system projects. He is also contributing to the academia of wind engineer as the Vice President of Wind Engineering Institute of Korea.

Education

Ph.D. in Civil Engineering. Korea Advance * Institute of Science & Technology (KAIST), 1992

CEO

TESolution

✤ M.Sc. in Civil Engineering. Kyoto University Graduate School (Japan), 1988

- 2002~Present: CEO of TESolution
- 1997~Present: Vice President of Wind * Engineering Institute of Korea
- ✤ 1993~2002: Principal Research Engineer of Hyundai Engineering & Construction
- Adjunct Professor of KAIST, Sungkyunkwan University, Kyonggi University

Company Overview

CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers Awards & Certificates

Awards Certificates Expertise

Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration Track Record Global Presence

Track Record

Description

Dr. Seok-joon Joo is a specialist in the field of windinduced vibration control system and wind tunnel test. He obtained his Doctor's degree in 2000, with study on Robust Control of High-rise Building. As one the leading Researchers at Wind Engineering & Vibration Control Department at Hyundai Institute, he played a vital role in development of the first Hybrid Mass Damper in Korea. He is one of the foundering members of TESolution, and has conducted over 30 vibration control projects and 100 wind tunnel tests. He has played a major role in obtaining number of patents such as Vibration Control Device of Construction Structure and Vibration Control and Elasto-plastic Vibration Control Device.

Dr. Seok-jun, JOO

Managing Director TESolution

Education

- Ph.D in Architectural Engineering, Seoul National University, 2000
- M.Sc. in Architectural Engineering, Seoul National University, 1995
- BA in Architectural Engineering, Seoul National University, 1991

- ✤ 2002~Present: Director of TESolution
- 2010~2011: Visiting Scholar of University of Western Ontario (Canada)
- 2000~2002: Senior Research Engineer of Hyundai Engineering & Construction
- 1998~1999: Instructor of Seoul National University of Science & Technology

Expertise

Company Overview

CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers Awards & Certificates

Awards Certificates Expertise

Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration Track Record Global Presence

Track Record

Dr. Seung-woo LEE

Description

Dr. S.W. Lee received his M.S. in civil engineering from KAIST in 1998. He has studied vibration isolation of bridge. After obtaining a master's degree, he worked as a researcher of wind engineering & vibration control department at Hyundai Institute of Construction Technology. In 2004, he joined TESolution and started a course of Ph.D degree at KAIST. He obtained a Ph.D with study of wind engineering and energy harvesting in 2013. During his tenure at TESolution, he has conducted over 150 wind tunnel tests and relevant analyses for wind resistant design of bridges. He has also carried out large numbers of R&D projects regarding bridge and vibration. He is a specialist in the fields of bridge aerodynamics and vibration control.

Education

- Ph.D in Civil Engineering (Korea Advanced Institute of Science and Technology), 2013
- M.Sc. in Civil Engineering. Korea Advance Institute of Science & Technology (KAIST), 1998

Director

TESolution

 BA in Civil Engineering. Korea Advance Institute of Science & Technology (KAIST), 1996

- 2004 ~ Present: Director of TESolution
- 2013 ~ Present: Director of Wind Engineering Institute of Korea
- 2014 ~ 2015: Visiting Researcher of University of Arizona (US)
- 2000 ~ 2004: Research Engineer of Hyundai Engineering & Construction

Company Overview

CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers

Engineers

Lead

Awards & Certificates

Awards Certificates Expertise

Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration

Track Record Global Presence

Track Record

Description

Dr. Saang-bum Kim has worked in the area of bridge and wind engineering. Since he received his Ph.D., he has researched on the vibration control and system identification for large infra structures. From 2005 to 2015, he was a principal research engineer at Samsung C&T with the main research projects: fluid-structure interaction analysis for bridge aero-dynamics, aero-elastic analysis for Mersey gateway bridge, performance evaluation of cable dampers (Incheon/Wando bridge), bridge-train interaction analysis for maglev system, and experimental modal analysis with wireless sensor network. Now he is actively working on the development of vibration control system. Dr. Saang-bum KIM Director TESolution

Education

- Ph.D. in Civil Engineering, Korea Advance Institute of Science & Technology (KAIST), 2000
- M.Sc.. in Civil Engineering, Korea Advance Institute of Science & Technology (KAIST), 1993
- BA in Civil Engineering, Korea University, Korea, 1991

- ✤ 2016 ~ Present : Director of TESolution
- ✤ 2005 ~ 2016 : Principal Research Engineer of Samsung C&T
- ✤ 2005 ~ 2005 : Research Associate of KAIST
- 2003 ~ 2004 : Visiting Scholar of University of Illinois Urbana-Champaign (USA)
- 2001 ~ 2003: Visiting Scholar of Notre Dame (USA)

Company Overview

CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers Awards & Certificates

Awards Certificates Expertise

Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration rack Record

Track Record

Kyu-Seok Hwang

Track Record Global Presence

Lead Engineers

Description

K.S. Hwang received his M.S. in architectural engineering from JBNU(JeonBuk National University), Korea in 1997, where He studied wind engineering of building. He completed his Ph. D. course with study of the wind-induced response of tall buildings from JBNU, Korea in 2013. From 1997 to 2014, he has worked as a Principal Research Engineer of wind engineering & vibration control department at Hyundai Engineering & Construction. He has conducted over 150 wind tunnel test projects of buildings. He is a specialist in the field of wind tunnel test of buildings..

Education

 Ph.D Candidate in Architectural Engineering, JeonBuk National University, Korea, 2013

Director

TESolution

- M.Sc. in Architectural Engineering, JeonBuk National University, Korea, 1997
- BS. in Architectural Engineering, JeonBuk National University, Korea, 1995

- ✤ 2020 ~ Present : Managing Director of TESolution
- ✤ 2015 ~ 2020 : Chief Engineer at R&D Center of WINHITECH
- ◆ 1997 ~ 2014 : Deputy General Manager of TESolution
- 2004 ~ 2007 : Principal Research Engineer of Hyundai Engineering & Construction

Company Overview

CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers

Awards & Certificates

Awards Certificates Expertise

Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration

Track Record **Global** Presence

Track Record

Description

Dr. Seok Heo graduated in Dongguk University with Ph. D under prof. M. K. Kwak. After graduation, he worked in University of Nevada, Reno as Post-doc (2003-2005), Konkuk University as Research Professor (2005-2009), and research center of Judico co. as director (2012-2013). He is a specialist in active vibration control of smart structures. He joined TESolution in 2015, and currently in vibration analysis and vibration control of the structures.

Dr. Suk, HEO

Director **TESolution**

Education

- Ph.D. in Mechanical Engineering, Dongguk University, 2003
- ✤ M.Eng. in Mechanical Engineering, Dongguk University, 2000
- B.Eng. in Mechanical Engineering, Dongguk University, 1998

- 2015 ~ Present: General Manager of TESolution
- * 2012 ~ 2013 Director of Judico Co. Research Center
- 2005 ~ 2009: Research engineer & instructor in * Kumoh National Institute of Technology, Korea
- 2003 ~ 2005: Post-doc., University of Nevada *

Company Overview	Awards & Certificates	Expertise	Track Record
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence

Awards

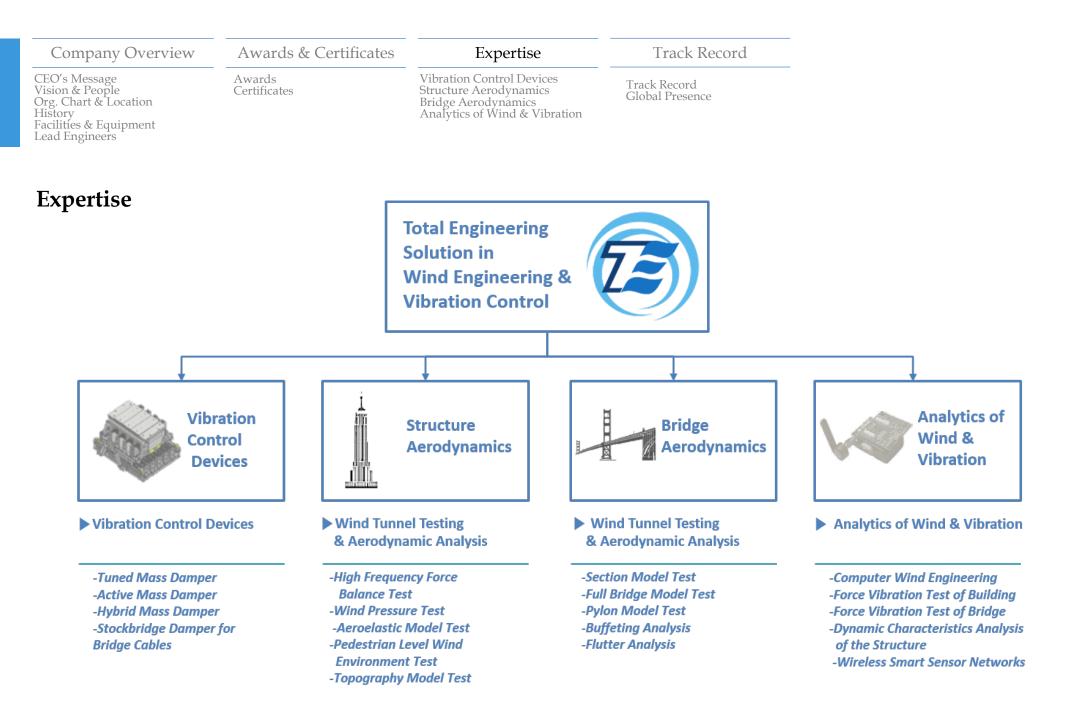
Company Overview

Expertise

Company Overview	Awards & Certificates	Expertise	Track Record
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence

Awards

Company Overview	Awards & Certificates	Expertise	Track Record
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence


Certificates

19

Company Overview

Expertise

20

Awards & Certificates

Company Overview	Awards & Certificates	Expertise	Track Record
CEO's Message Vision & People Org, Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence

Vibration **Control Devices**

- Vibration Measurement: Measurement of structural frequency, damping ratio, and estimation of mode shape. •
- Basic/Detail design : Determination of dimension, types, and specifications of tuned mass dampers, drawing works ۲
- Fabrication/ Performance test at TESolution : Friction/vibration tests ٠
- Installation/ Performance test at construction site : Frequency tuning and verification of required control performance •
- Maintenance : Check control performance and main components ٠

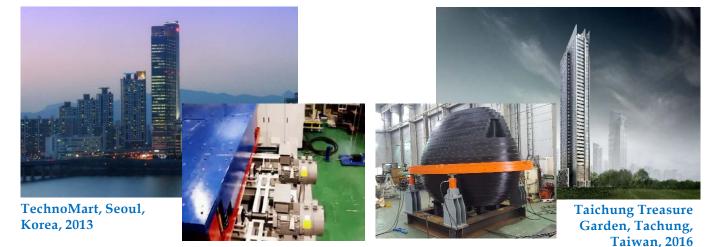
Principle of Vibration Control

Pendulum-type Tuned Mass Damper

Sliding-type Tuned Mass Damper

Active Mass Damper

Company Overview	Awards & Certificates	Expertise	Track Record
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence


Vibration Control Devices

Application for Buildings

International organization for standard-ization (ISO) and building codes in many countries (such as AIJ2004, ISO 10134) recommend that structures meet specific criteria of vibration control classified by natural period of the building and human perception level of building acceleration. The objective of vibration control device is to improve damping efficiency and habitability of building by reducing the building acceleration with the installation of vibration control device.

- Towar A 90T Cliding turns T
- ► Tower A 80T Sliding type TMD
- **Tower B 160 ton Sliding type TMD**

50 ton Hybrid Mass Damper
40 ton TMD for vertical vibration control
50 ton AMD for horizontal vibration control

▶ 150 ton Pendulum type Tuned Mass Damper

Expertis

Vibratio	n
Control	Devices

Company Overview

CEO's Message

Vision & People

History

Org. Chart & Location

Facilities & Equipment Lead Engineers

Application for Bridges

Long-span bridges, such as suspension or cable-stayed bridges are structurally highly vulnerable to wind load due to small bending / momentum stiffness and damping ratio. In case of footbridge, vibration serviceability may not be satisfied due to excessive vertical vibration through pedestrian movement even if the structural safety is satisfied.

Expertise

Vibration Control Devices

Analytics of Wind & Vibration

Structure Aerodynamics

Bridge Aerodynamics

Track Record

Track Record

Global Presence

Vibration control devices for bridges are installed not only to increase the wind resistant performance under construct-ion and in- service stages but also to improve serviceability of footbridges

Awards & Certificates

Awards

Certificates

Geoga Bridge (Korea)

2nd Jindo Bridge (Korea)

Company Overview	Awards & Certificates	Expertise	Track Record
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence

Vibration Control Devices

Application for Special Structures

Vibration control devices can be designed in various shapes and sizes to fit in the tightest installation location to increase structural damping.

Namsan Cable Car (Korea)

Incheon Internation Airport ATC Tower (Korea)

Company Overview

Company Overview Awards & Certificates Expertise Track Record Vibration Control Devices CEO's Message Awards Track Record Vision & People Certificates Structure Aerodynamics **Global** Presence Org. Chart & Location Bridge Aerodynamics History Analytics of Wind & Vibration Facilities & Equipment Lead Engineers

Vibration Control Devices

Stockbrdige Damper for Bridge Cables

Stockbridge damper, currently most commonly used vibration damper for power line, can be designed to dissipate the input wind energy over a wide range of frequencies

- Aeolian vibration (vortex-induced vibration)
- Galloping
- Wake galloping
- Rain- Wind induced vibration
- Parametric excitation
- Buffeting

Stockbridge Damper, Ulsan Bridge(suspension bridge), 2015

Stockbridge Damper, Palyung Bridge(suspension bridge), 2016

Stockbridge Damper, Palyung Bridge(`bridge), 2016

Company Overview	Awards & Certificates	Expertise	Track Record
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence

Structure Aerodynamics

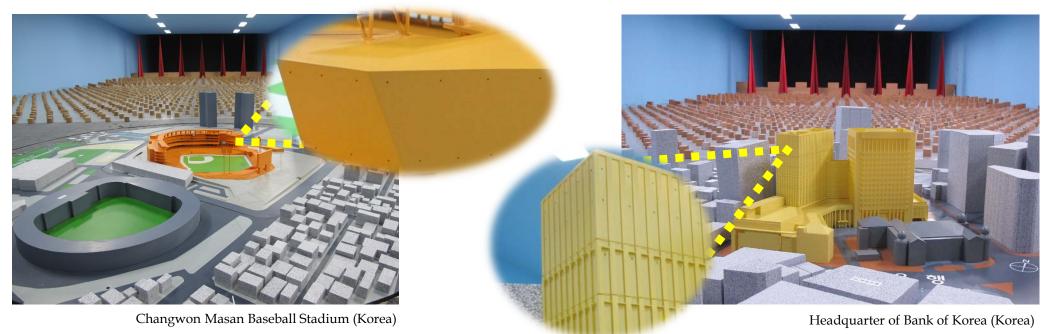
High Frequency Force Balance Test (HFFB Test)

Major findings:

- Base sheer, base moment
- Static floor-by-floor wind load for structural design
- Wind-induced acceleration, serviceability evaluation (AIJ, ISO6897, ISO10137, NBCC, etc.)

Al Reem Island Four Vanes (UAE)

Busan IFC (Korea)


Soho Navi, Al Reem Island (UAE)

Company Overview	Awards & Certificates	Expertise	Track Record
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence

Structure Aerodynamics

Wind Pressure Test

- Pressure for cladding design
- Wind load for design of roof structures
- Wind pressure for design of structural member for open-air structures such as parapet, canopy, free-standing wall, etc.

Company Overview

Company Overview	Awards & Certificates	Expertise	Track Record
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence

Structure Aerodynamics

Aeroelastic Model Test

- Time dependent data of displacement, acceleration response
- Possibility of vortex-induced vibration or aerodynamic instability vibration
- The same findings to that of HFFB Test

Boryoung Power Plant Steel Stack (Korea)

Dangjin Steel Stack (Korea)

Company Overview

Company Overview	Awards & Certificates	Expertise	Track Record
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence

Structure Aerodynamics

Pedestrian-level Wind Environment Test

- Wind spend + wind direction occurrence frequency in relation to the climate data
- Wind speed ratio with respect to design wind speed
- Assessment of pedestrian level wind load
- Visualization of wind flow

Boryoung Power Plant Steel Stack (Korea)

Shangri La Hotel (Mongolia)

Expertise

Company Overview	Awards & Certificates	Expertise	Track Record
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence

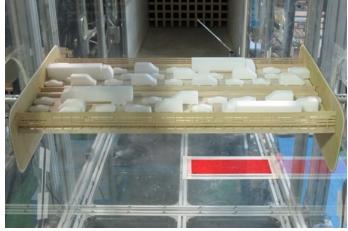
Structure Aerodynamics

Topography Model Test

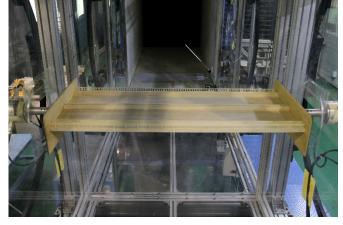
- Distribution of wind speed (horizontal and vertical directions)
- Distribution of turbulence intensity (horizontal and vertical directions)
- Topographic effects

Everland Resort (Korea)

Dokco Island (Korea)


Company OverviewAwards & CertificatesExpertiseTrack RecordCEO's Message
Vision & People
Org. Chart & Location
History
Facilities & Equipment
Lead EngineersAwards
CertificatesVibration Control Devices
Structure Aerodynamics
Bridge Aerodynamics
Analytics of Wind & VibrationTrack Record
Global Presence

Bridge Aerodynamics


Section Model Tests

Test areas:

- Aerodynamic stability: vortex-induced vibration, flutter, galloping
- Aerodynamic force drag, lift. moment coefficients
- Steady aerodynamic force: drag, lift, moment coefficients.
- Aerodynamic optimization of the shape for unstable aerodynamic behavior of bridge.

Mersey Gateway Bridge (UK)

New Nile Bridge (Uganda)

31

Spring Support System

CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers

Company Overview

Awards Certificates

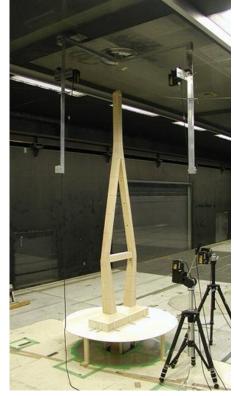
Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration

Track Record Global Presence

Bridge Aerodynamics


Pylon Model Test

Test areas:


- Aerodynamic stability: vortex-induced vibration, flutter, galloping
- Base shear force, base overturning moment, base torsional moment
- Wind force of pylon legs: Drag, lift, pitching moment coefficients
- Wind force of whole pylon: Drag, lift, torsional moment, overturning moment coefficients
- Aerodynamic optimization of the shape of pylon leg to increase aerodynamic stability and to decrease static deformation due to wind

Vam Cong Birdge (Vietnam)

Chacao Channel Bridge (Chile)

Incheon Bridge (Korea)

Company Overview	Awards & Certificates	Expertise	Track Record
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence

Bridge Aerodynamics

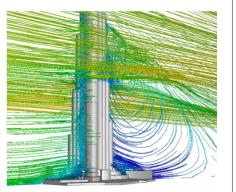
Full Bridge Model Test

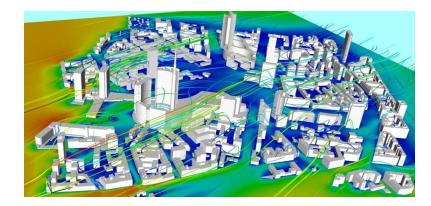
Test areas:

- Aerodynamic stability: vortex-induced vibration, flutter, galloping
- Aerodynamic stability of full-bridge in the erection / completed stage should be considered
- Aerodynamic stability of full bridge in various wind directions should be considered

(Effects from topography, construction facilities are considered)

Vam Cong Birdge (Vietnam)




Company OverviewAwards & CertificatesExpertiseTrack RecordCEO's Message
Vision & People
Org. Chart & Location
History
Facilities & Equipment
Lead EngineersAwards
CertificatesVibration Control Devices
Structure Aerodynamics
Bridge Aerodynamics
Analytics of Wind & VibrationTrack Record
Global Presence

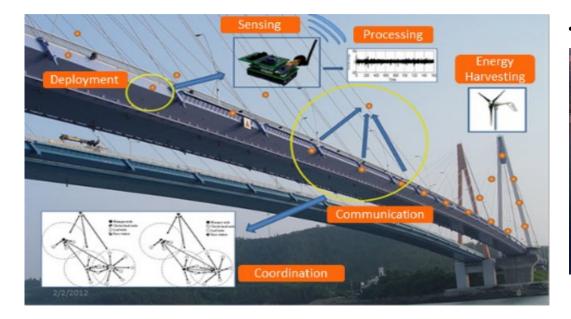
Analytics of Wind & Vibration

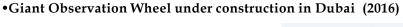
Computational Wind Engineering

Computational Wind Engineering [CWE] uses Computational Fluid Dynamics [CFD) method to solve problems encountered in wind engineering. Numerical modeling with CFD can be a powerful alternative as it can avoid limitations of on-site measurements and wind tunnel tests.

Force Vibration Test on Structures

When evaluating dynamic safety of the structure such as wind resistance safety or anti-seismic safety, forced vibration test on structure with shake table can be conducted to effectively gather necessary data

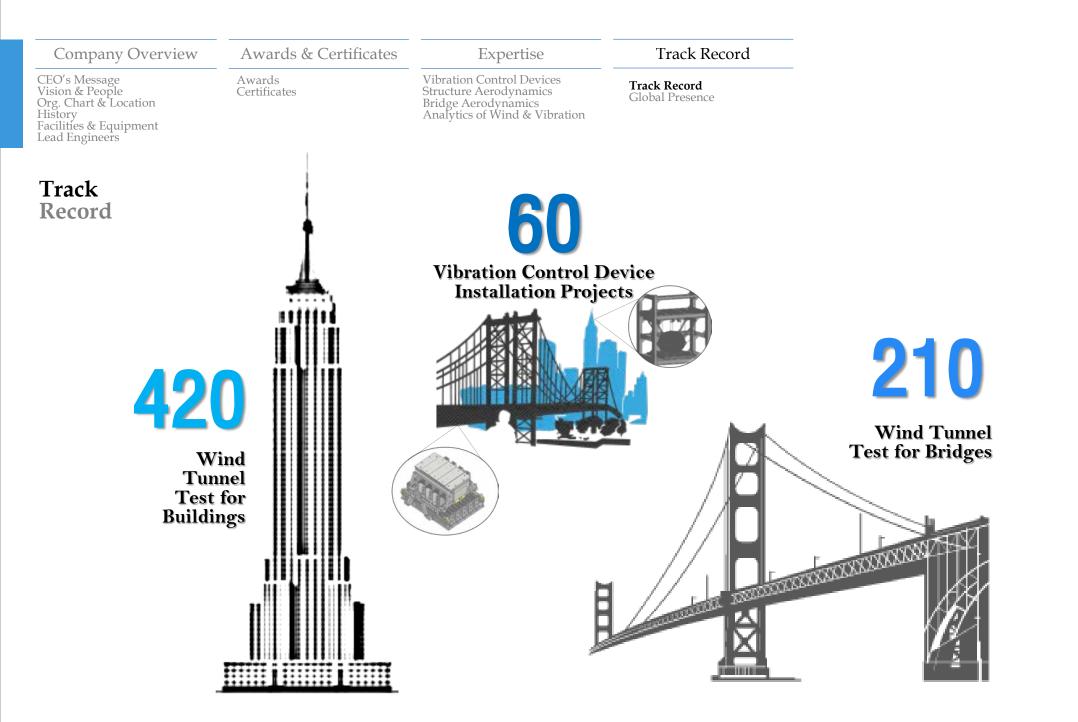


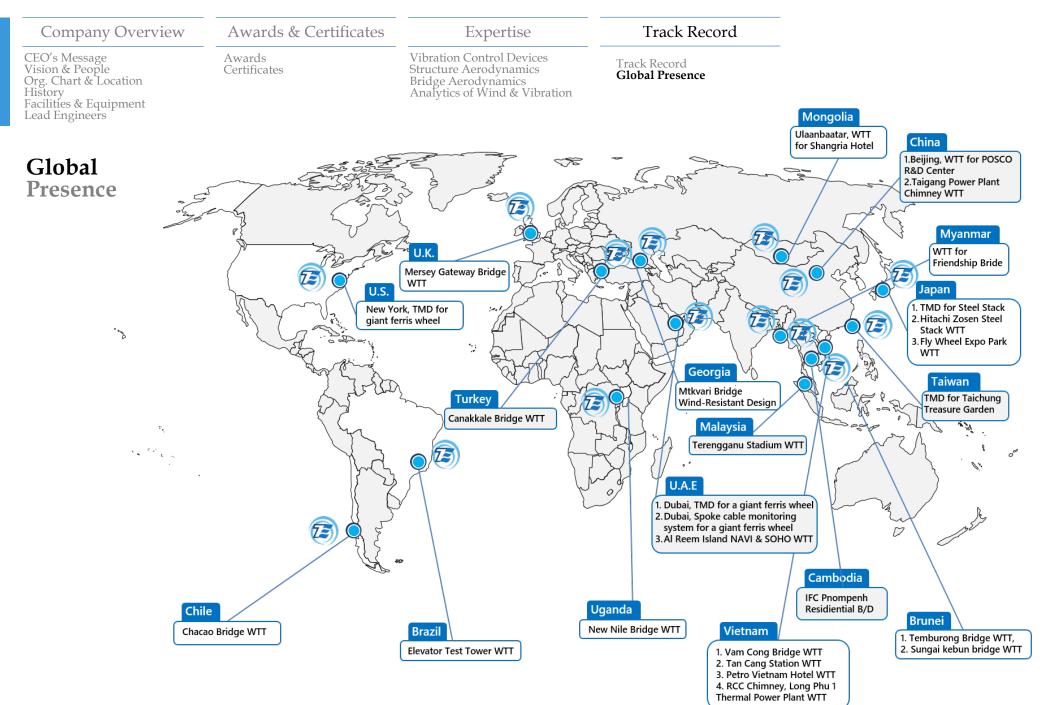

Company Overview	Awards & Certificates	Expertise	Track Record
CEO's Message Vision & People Org. Chart & Location History Facilities & Equipment Lead Engineers	Awards Certificates	Vibration Control Devices Structure Aerodynamics Bridge Aerodynamics Analytics of Wind & Vibration	Track Record Global Presence

Analytics of Wind & Vibration

Wireless Smart Sensors

Recent advancement in the sensor technologies have enabled Structural Health Monitoring(SHM) using wireless smart sensor networks (WSSNs), which is a promising alternative to the traditional wired SHM approaches. The smart sensors are typically small, inexpensive, and capable of wireless communication and onboard computation, addressing many of the concerns regarding wired monitoring.





Wireless Smart Sensor on clamping system with solar panel

Expertise

Company Overview Awards & C

Contact Us

142 Seungjin-gil Gongdo-eup, Anseong-si, Gyeonggi-do, S. Korea PO#: 17563

TESolution refers to Total Engineering Solution, specializing in Wind Engineering & Vibration Control.

Copyright ©2015 by TESolution Co. Ltd. All rights reserved.